
The Complete Guide
to Headless CMS
Decoupled and hybrid content delivery options with WordPress

WHITE PAPER

One of the top trends in the world of content management is the

emergence of headless CMS. In recent years, many organizations have

begun evaluating new architectures to meet their content management

needs. And emerging vendors have been more than willing to fan the

hype around headless CMS.

But what exactly is headless CMS? Is it for you? And what’s the best way

to get the benefits of a headless architecture without creating unneeded

complexity or reliance on untested technologies?

In our guide, we’ll discuss the plus points of headless CMS, things

to watch out for with headless architecture, and how a global media

organization delivers great content to a worldwide audience via a

headless implementation.

What headless is and why it’s different
Traditionally CMS has contained two components:

•	 The back end: The CMS stores and manages all the content

a company has produced. This included all the tools content

producers use to create content, the taxonomy and nomenclature	

of the content and the storage and retrieval of that content.

•	 The front end (or “head”): Here the CMS manages the presentation

of the content. This includes themes and templates that power the

way the content is presented to the viewer.

In a typical CMS deployment, these two pieces of technology are

delivered by a single solution. In this model, a full-featured Content

Management System (CMS) directly renders the user experience of your

site in a web browser. The most popular has been WordPress, which

today powers more than 40% of the web. By delivering everything in 	

one package, content marketers and other content producers were able

to easily create content faster and take advantage of a rich ecosystem 	

of themes to create a great customer experience.

Headless CMS operates differently. It removes the front end entirely. 	

In headless architectures the CMS manages only the back end and

exposes APIs to access content. It is then up to the organization to

build their own custom front end. Because the back and front ends are

“decoupled,” the user experience can be built with any technology of

your choice. Often this means using technologies like Node.js to produce

dynamic web pages. Regardless of the technologies, the CMS is not

involved directly in defining the presentation of the content.

Advantages of going headless
So if a headless CMS is similar to a traditional CMS but lacks a core

component, why would anyone want to adopt this? Why is it such a hot

topic? There are several key reasons why headless CMSes have become

more popular recently:

•	 Deeper control of the experience: By necessity, even the most

complex theme or template for a web page has its limitations

around customizability. By putting full control of the experience

in the hands of the developer, headless architectures basically

let developers do whatever they want. This can lead to highly

differentiated experiences.

•	 Flexibility and iteration: Developers can essentially take their pick

of front-end technologies. They can more quickly make changes in

their code based on their analysis of user behavior and potentially

iterate faster.

•	 Omnichannel support: Customers no longer access content only

from websites. They also use mobile apps, IoT devices, smart

speakers, digital displays and much more. Decoupled applications

can more easily be written with these new user touchpoints in mind.

2 | W P V I P . C O M

•	 Data ingestion and use: ​​Headless architectures can improve

performance in certain instances. For example, if your site needs 	

to ingest content or data from multiple sources and then present

it to users without making a stop at your CMS database, headless

might be a good solution. Deeper control of the experience: By

necessity, even the most complex theme or template for a web page

has its limitations around customizability. By putting full control of

the experience in the hands of the developer, headless architectures

basically let developers do whatever they want. This can lead to

highly differentiated experiences.

For these reasons headless architectures have become a favorite

of development and other technical teams. Often the adoption of 	

a headless CMS accompanies the growth of development teams and 	

new investments in digital transformation.

Downsides of headless architectures
All of this comes with a cost. Over the years, a whole ecosystem

developed around CMSes. Headless CMSes often abandon years of

know-how and rock-solid off-the-shelf technologies in favor of having

developers “reinvent the wheel.” This can create challenges around:

•	 Complexity: The flexibility of headless deployments also typically

means a more complex architecture, with multiple components

necessary to build the experience. Each is another piece of

infrastructure that has to be designed, managed, and maintained.

Failure to do so effectively can cause performance, reliability, and

scalability issues.

•	 Expense: All of this comes at a cost. Not only is it often expensive

to maintain complex environments, but it typically takes more

development resources to make changes. Instead of building from

off-the-shelf themes, everything has to be built from the ground up.

•	 Dependence on developers: One of the reasons CMS emerged in

the first place was to reduce dependence on developers. Headless

CMS puts developers back in the mix when it comes to relatively

simple configuration or customization of the customer experience.

But this can create bottlenecks that limit content agility.

•	 Weaker tools for content creators: Because new headless CMSes

were built with a developer-first mindset, many lacked good and

3 | W P V I P . C O M

intuitive tools for content creation. This means non-technical	

staff waste time trying to create the content an organization needs 	

to fuel growth, partially negating the agility promised by many

headless vendors.

Each of these is a serious pitfall and why many headless CMS projects

ultimately fail to live up to their hype.

Four things to consider when choosing the
right architecture
1.	 What problem are you trying to solve? If it’s speed or security, in

most cases we’d recommend optimizing your codebase before

changing to a headless architecture. On the other hand, if you have

unique experience needs across multiple channels, headless might

be a good fit.

2.	 How are you currently measuring the impact of that problem?

Whether you are using a tool to measure performance, measuring

the time it takes your development team to ship new features, or

understanding what percentage your customer base values various

experiences, use data to inform your decision.

3.	 What additional resources will your choice require and do you have

them at hand? Do you need to hire new developers to build and

maintain the front end of a headless solution? Have you thought

about the requirements for your DevOps team, when it comes to

managing separate repositories for your CMS and your front-end

application?

4.	 Where will you host your front end? Will your current or future

provider of CMS technology also be able to host your application? 	

If not, where will you host it and how will you plan to ensure the

right performance and integration?

Decoupled delivery via Agile CMS:
 The best of both worlds
Once upon a time, headless and single-stack were an either-or choice

and if your answer to these questions changed over time, it could

require a rip-and-replace type of shift. Thankfully, new technologies are

emerging that bring the advantages of headless CMS without many 	

4 | W P V I P . C O M

of the pitfalls. Forrester Research recently defined a new		

category—Agile CMS—that has moved the market beyond headless.

Agile CMSes are built around a central content hub. Required

capabilities include:

•	 Decoupled architecture: Instead of forcing one model or the other,

organizations can build their own front end or use the existing

CMS-provided front end. They can even choose to build different

experiences using different models—for example, building their

website with an existing theme while using an API-first approach 	

for a mobile app.

•	 One central content hub: No matter where the content goes or how

experiences are developed, it pulls from a single content repository

that supports access from REST and GraphQL APIs.

•	 Continued access to ecosystem: Years of existing plugins, themes,

and templates remain available and can be used where appropriate,

without losing flexibility.

•	 Superior content authoring tools: Agile CMS gives content

creators all the intuitive content creation tools they expect 		

from leading CMSes such as WordPress, even if the front end 	

is something custom.

Decoupled delivery with WordPress
WordPress has frequently been used in a decoupled state by

publishers, whose sites ingest content from WordPress JSON feeds

into native mobile applications and other user experiences that aren’t

necessarily conventional websites. From popular iPhone apps for news

organizations to networks of digital signage in hotels, WordPress is

behind the scenes of a large range of user experiences.

In a traditional delivery model, WordPress themes include templates

to manage the display of content on the front end. Content production,

a templating engine, third party integrations, even design and user

experience, all come in one handy package.

In a headless architecture, WordPress is separated from the templating

engine, design, and user experience. In this model there are several

pieces that may be required:

5 | W P V I P . C O M

•	 A Javascript Framework: While not strictly required, JavaScript

frameworks and libraries have become a popular way to build the

front end of websites, independent of the underlying CMS. While

it is possible to write their Node.js applications from scratch, it’s

popular to use a framework like Next.js, Gatsby, Frontity, etc.

•	 APIs: Content will be accessed via APIs.

•	 REST APIs are popular for reliable, extensive, and extensible

source of JSON feeds of content and data from your WordPress

admin. Many approaches to headless WordPress consume 	

REST API and parse the requested data into React templates 	

for display.

•	 GraphQL APIs are an increasingly popular alternative. It is a

Query Language built to craft more precise (and lightweight)

queries to bring only the data you need from your CMS into 	

your front-end application.

How WordPress VIP simplifies
headless WordPress
While there are many reasons organizations want to deploy their 	

CMS in a headless architecture, one of the inherent disadvantages of

headless CMS is complexity. It involves more components, not least 	

the additional code for one or more front-end applications.

More pieces mean more things to manage and more things that can

go wrong. Some, but not all, of this problem is unavoidable. However,

with recent enhancements, the WordPress VIP platform reduces

this complexity for your teams, ensuring the right foundation for 	

headless success.

Hosting of node applications
A key component of many headless architectures is Node.js apps. 	

With no built-in front end, a company’s developers have to develop 	

their own, composed of one or more Node apps. But those apps have 	

to live somewhere.

We’ve spent years developing a solid platform designed for security,

performance, and management. Furthermore, it’s the same platform, 	

run from the same data centers that host our CMS product, WordPress.

By running on this platform, Node applications take advantage of all

6 | W P V I P . C O M

these core platform services, reducing the number of suppliers and

services that can cause failures, and easing troubleshooting.

Bundling of everything needed
Headless architectures often require multiple pieces or components,

including CMS plug-ins, API packages, and databases,which take time

and effort to deploy and manage.

We’ve packaged all this into a single headless bundle that can be

instantly deployed on our platform. Getting started takes a fraction 	

of the time.

Databases on-demand
Many Node applications in a headless architecture tend to be stateless.

But not all.

Where storage is needed, a Redis or similar in-memory database can

be a good choice. However, it is important to ensure the security and

reliability of the connection to this data store. Some choose to connect

these components with third-party VPNs, which can introduce even

more complexity. We’ve simplified this challenge by making Redis

available right in our solution. If and when you need a data store, it’s

easy to simply turn it on alongside your application in a private network.

Everything works securely and with high performance right away.

Next.js Quickstart
Once you’ve got all the pieces in place, you need to start writing your

own code.

Each application will be unique based on your specific needs and

desired experience. That’s probably part of why you chose a headless

architecture in the first place. However, most applications have similar

requirements like content preview, content querying, etc.

We’ve included sample skeleton code that provides good solutions to

each of these needs. This saves time, ensures performance, and lets you

focus on your unique needs rather than the mundane nuts and bolts.

WordPress VIP: a strong hybrid option
While you may be looking for a headless architecture today, many

organizations find over time it makes sense to combine the flexibility 	

7 | W P V I P . C O M

of headless with the out-of-the-box functionality of a single-stack CMS.

For example, they may have multiple web properties and want to use

existing WordPress themes for some while focusing their developers

on only a few key sites. Others may find they want to serve the web

with a more traditional technology stack while powering other digital

experiences with an API-driven headless architecture.

With WordPress VIP, you don’t have to choose headless or traditional

single stack deployment. We provide a single content hub that can power

a hybrid deployment, fixing and matching architectures to meet your

diverse needs. No matter how you deploy today and in the future, it’s all

managed from a single administrative console, and content creators can

build content blocks using our easy and intuitive Gutenberg editor.

Going headless—where to get started
WordPress VIP customers Al Jazeera, News UK, Quartz, TechCrunch,

and Fortune are all running decoupled solutions today. Each of these

sites consumes performant and reliable feeds from the WordPress API,

produced by their installation of WordPress running on the WordPress

VIP platform, and using a variety of headless configurations. Overall,

WordPress VIP delivers a powerful, easy and flexible option for headless

deployments. Contact us to learn more.

About WordPress VIP
We are WordPress VIP, the agile content platform leading a 	
powerful enterprise ecosystem. As we fit seamlessly across your
organization, enjoy the ease, flexibility, and freedom you need to 	
scale the digital experiences that drive your growth.

WordPress VIP offers content management, enterprise commerce, 	
and content analytics. Our platform provides best-in-class digital
creation, combined with the insights to understand and optimize 	
the impact of those digital experiences.

Our team has been delivering WordPress at scale for more than 		
a decade, and will guide your team with architecture, integrations,
plugins, agencies, and more.

Learn more at wpvip.com.

https://wpvip.com/

